Heatmap Module#
Heatmap module.
- class landmarker.heatmap.GaussianHeatmapGenerator[source]#
Gaussian heatmap generator for generating heatmaps from landmarks.
- Parameters:
nb_landmarks (int) β number of landmarks
sigmas (float or list[float] or torch.Tensor or np.ndarray) β sigmas of the gaussian heatmap function
gamma (float or None) β scaling factor of the gaussian heatmap function
rotation (float or list[float] or torch.Tensor or np.ndarray) β rotation of the gaussian heatmap function
heatmap_size (tuple[int, int]) β size of the heatmap
learnable (bool) β whether the sigmas and rotation are learnable
background (bool) β whether to add a background channel to the heatmap
all_points (bool) β whether to add a channel with the sum of all the landmarks
continuous (bool) β whether to use continuous or discrete landmarks
na_zero (bool) β whether to set the value of the landmarks to zero if they are not available
- __init__(nb_landmarks, sigmas=1.0, gamma=None, rotation=0, heatmap_size=(512, 512), learnable=False, background=False, all_points=False, continuous=True, na_zero=False)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
nb_landmarks (int) β
sigmas (float | list[float] | Tensor | ndarray) β
gamma (float | None) β
rotation (float | list[float] | Tensor | ndarray) β
heatmap_size (tuple[int, ...]) β
learnable (bool) β
background (bool) β
all_points (bool) β
continuous (bool) β
na_zero (bool) β
- Return type:
None
- heatmap_fun(landmark_t, coords, covariance, gamma)[source]#
Gaussian heatmap function
- Parameters:
landmark_t (torch.Tensor) β coordinates of the landmark (y, x) or (z, y, x)
coords (torch.Tensor) β coordinates of the pixel (y, x) or (z, y, x)
covariance (torch.Tensor) β covariance matrix (y, x) or (z, y, x)
gamma (float or None) β scaling factor of the heatmap function
- Returns:
value of the gaussian heatmap function for the given pixel
- Return type:
torch.Tensor
- class landmarker.heatmap.LaplacianHeatmapGenerator[source]#
Laplacian heatmap generator for generating heatmaps from landmarks.
- Parameters:
nb_landmarks (int) β number of landmarks
sigmas (float or list[float] or torch.Tensor or np.ndarray) β sigmas of the Laplacian heatmap function
gamma (float or None) β scaling factor of the Laplacian heatmap function
rotation (float or list[float] or torch.Tensor or np.ndarray) β rotation of the laplacian heatmap function
heatmap_size (tuple[int, int]) β size of the heatmap
learnable (bool) β whether the sigmas and rotation are learnable
background (bool) β whether to add a background channel to the heatmap
all_points (bool) β whether to add a channel with the sum of all the landmarks
continuous (bool) β whether to use continuous or discrete landmarks
na_zero (bool) β whether to set the value of the landmarks to zero if they are not available
- __init__(nb_landmarks, sigmas=1.0, gamma=None, rotation=0, heatmap_size=(512, 512), learnable=False, background=False, all_points=False, continuous=True, na_zero=False)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
nb_landmarks (int) β
sigmas (float | list[float] | Tensor | ndarray) β
gamma (float | None) β
rotation (float | list[float] | Tensor | ndarray) β
heatmap_size (tuple[int, ...]) β
learnable (bool) β
background (bool) β
all_points (bool) β
continuous (bool) β
na_zero (bool) β
- Return type:
None
- heatmap_fun(landmark_t, coords, covariance, gamma=None)[source]#
Laplacian heatmap function
- Parameters:
landmark_t (torch.Tensor) β coordinates of the landmark (y, x)
coords (torch.Tensor) β coordinates of the pixel (y, x)
covariance (torch.Tensor) β covariance matrix (y, x)
gamma (float or None) β scaling factor of the heatmap function
- Returns:
value of the gaussian heatmap function for the given pixel
- Return type:
torch.Tensor
- landmarker.heatmap.coord_argmax(heatmap, spatial_dims=2)[source]#
Returns the coordinates of the maximum value of the heatmap for each batch and channel (landmark).
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W) or (B, C, D, H, W)
spatial_dims (int) β number of spatial dimensions (2 or 3)
- Returns:
coordinates of shape (B, C, 2) or (B, C, 3)
- Return type:
(torch.Tensor)
- landmarker.heatmap.coord_cov_from_gaussian_ls(heatmap, gamma=None, ls_library='scipy', spatial_dims=2)[source]#
Returns the modal coordinates and covariance matrix from a heatmap through fitting the heatmap on Gaussian distribution with a specicic scaling factor gamma with help of least squares optimization.
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W)
gamma (float) β gamma parameter of the gaussian heatmap generator
ls_library (str) β library to use for least squares optimization. (scipy or pytorch)
spatial_dims (int) β number of spatial dimensions (2 or 3)
- Returns:
coordinates of shape (B, C, 2) (torch.Tensor): covariance matrix of shape (B, C, 2, 2)
- Return type:
(torch.Tensor)
- landmarker.heatmap.coord_local_soft_argmax(heatmap, window=5, t=10.0, spatial_dims=2)[source]#
- Returns coordiantes through applying the local soft-argmax function on the heatmaps.
Source: βSubpixel Heatmap Regression for Facial Landmark Localizationβ - Bulat et al. (2021)
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W) or (B, C, D, H, W)
window (int) β local window size
t (float) β temperature that controls the resulting probability map
spatial_dims (int) β number of spatial dimensions (2 or 3)
- Returns:
coordinates of shape (B, C, 2)
- Return type:
(torch.Tensor)
- landmarker.heatmap.coord_weighted_spatial_mean(heatmap, spatial_dims=2, activation=None, require_grad=False, t=1.0)[source]#
Returns the spatial weighted mean of the heatmap. Source: βUGLLI Face Alignment: Estimating Uncertainty with
Gaussian Log-Likelihood Lossβ - Kumar et al. (2019)
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W) or (B, C, D, H, W)
spatial_dims (int) β number of spatial dimensions (2 or 3)
activation (str) β activation function to apply to the heatmap
require_grad (bool) β whether to require gradient for the coordinates
t (float) β
- Returns:
coordinates of shape (B, C, 2) or (B, C, 3)
- Return type:
(torch.Tensor)
- landmarker.heatmap.coord_weighted_spatial_mean_cov(heatmap, spatial_dims=2, require_grad=False, activation=None)[source]#
Returns the spatial weighted mean and the weighted sample covariance of the possitive elements of the heatmap by the heatmap values.
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W) or (B, C, D, H, W)
spatial_dims (int) β number of spatial dimensions (2 or 3)
require_grad (bool) β whether to require gradient for the coordinates
activation (str) β activation function to apply to the heatmap
- Returns:
coordinates of shape (B, C, 2) or (B, C, 3) (torch.Tensor): covariance matrix of shape (B, C, 2, 2) or (B, C, 3, 3)
- Return type:
(torch.Tensor)
- landmarker.heatmap.cov_from_gaussian_ls(heatmap, coords, gamma=None, ls_library='scipy', spatial_dims=2)[source]#
Returns covariance matrix from a heatmap through fitting the heatmap on Gaussian distribution with a specicic scaling factor gamma and specified coordinates with help of least squares optimization.
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W)
coords (torch.Tensor) β coordinates of shape (B, C, 2)
gamma (float) β gamma parameter of the gaussian heatmap generator
ls_library (str) β library to use for least squares optimization. (scipy or pytorch)
spatial_dims (int) β
- Returns:
covariance matrix of shape (B, C, 2, 2)
- Return type:
(torch.Tensor)
- landmarker.heatmap.heatmap_to_coord(heatmap, offset_coords=0, method='argmax', spatial_dims=2, require_grad=False)[source]#
Returns the retrieved coordinates via specified method from a heatmap. The offset_coords is used to remove the first offset_coords coordinates from the heatmap. This is used to remove the background class (if present).
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W) or (B, C, D, H, W)
offset_coords (int) β number of coordinates to remove
method (str) β method to retrieve the coordinates
spatial_dims (int) β number of spatial dimensions (2 or 3)
require_grad (bool) β whether to require gradient for the coordinates
- Returns:
coordinates of shape (B, C, 2) or (B, C, 3)
- Return type:
(torch.Tensor)
- landmarker.heatmap.heatmap_to_coord_cov(heatmap, method='soft_argmax', require_grad=True, spatial_dims=2)[source]#
Returns the modal coordinates and covariance matrix from a heatmap.
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W) or (B, C, D, H, W)
method (str) β method to retrieve the coordinates
require_grad (bool) β whether to require gradient for the coordinates
spatial_dims (int) β number of spatial dimensions (2 or 3)
- Returns:
coordinates of shape (B, C, 2) or (B, C, 3) (torch.Tensor): covariance matrix of shape (B, C, 2, 2) or (B, C, 3, 3)
- Return type:
(torch.Tensor)
- landmarker.heatmap.heatmap_to_coord_enlarge(heatmap, offset_coords=0, method='argmax', enlarge_factor=1, enlarge_dim=None, enlarge_mode='bilinear', spatial_dims=2)[source]#
Returns the retrieved coordinates via specified method from an enlarged heatmap. The offset_coords is used to remove the first offset_coords coordinates from the heatmap. This is used to remove the background class (if present).
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W) or (B, C, D, H, W)
offset_coords (int) β number of coordinates to remove
method (str) β method to retrieve the coordinates
enlarge_factor (int) β factor to enlarge the heatmap
enlarge_dim (tuple[int, ...] or None) β dimensions to enlarge the heatmap to
enlarge_mode (str) β interpolation mode to enlarge the heatmap
spatial_dims (int) β number of spatial dimensions (2 or 3)
- Returns:
coordinates of shape (B, C, 2)
- Return type:
(torch.Tensor)
- landmarker.heatmap.weighted_sample_cov(heatmap, coords, spatial_dims=2, activation=None)[source]#
Calculate the covariance matrix from a heatmap by calculating the mean of the heatmap values weighted by the heatmap values. source: https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_covariance
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W) or (B, C, D, H, W)
coords (torch.Tensor) β coordinates of shape (B, C, 2) or (B, C, 3)
spatial_dims (int) β number of spatial dimensions (2 or 3)
activation (str) β activation function to apply to the heatmap
- Returns:
covariance matrix of shape (B, C, 2, 2) or (B, C, 3, 3)
- Return type:
(torch.Tensor)
- landmarker.heatmap.windowed_weigthed_sample_cov(heatmap, coords, spatial_dims=2, activation=None)[source]#
Calculate the covariance matrix from a heatmap by calculating the mean of the heatmap values weighted by the heatmap values. The window is determined by the distance to the closest edge.
- Parameters:
heatmap (torch.Tensor) β heatmap of shape (B, C, H, W)
coords (torch.Tensor) β coordinates of shape (B, C, 2)
spatial_dims (int) β number of spatial dimensions (2 or 3)
activation (str) β activation function to apply to the heatmap
- Returns:
covariance matrix of shape (B, C, 2, 2)
- Return type:
(torch.Tensor)