Datasets Module#
Datasets module.
- landmarker.datasets.get_cepha_heatmap_datasets(path_dir, train_transform=None, inference_transform=None, sigma=1, junior=False, single_dataset=False, cv=False, **kwargs)[source]#
Returns a HeatmapDataset with the ISBI 2015 cephalogram challenge dataset. The dataset is split into train, test1 and test2. The same approach as in “CephaNN: A Multi-Head Attention Network for Cephalometric Landmark Detection” - JIAHOONG QIAN et al. is used.
- Parameters:
path_dir (str) – The path to the directory where the dataset should be stored.
train_transform (Optional[Callable], optional) – A transformation to apply to the images and landmarks during training. Defaults to None.
inference_transform (Optional[Callable], optional) – A transformation to apply to the images and landmarks during inference. Defaults to None.
sigma (int, optional) – The sigma value for the gaussian kernel. Defaults to 1.
junior (bool, optional) – Whether to use the junior or senior annotator. Defaults to False.
single_dataset (bool, optional) – Whether to return a single dataset with all images and landmarks. Defaults to False.
**kwargs – Additional keyword arguments for the HeatmapDataset.
cv (bool) –
- Return type:
HeatmapDataset | tuple[HeatmapDataset, HeatmapDataset, HeatmapDataset] | tuple[HeatmapDataset, HeatmapDataset, HeatmapDataset, HeatmapDataset]
- landmarker.datasets.get_cepha_landmark_datasets(path_dir, train_transform=None, inference_transform=None, store_imgs=True, dim_img=None, junior=False, single_dataset=False, cv=False)[source]#
Returns a LandmarkDataset objects with the CEPH dataset, a combination of the ISBI 2014 & 2015 challenges. The dataset is split into train, test1 and test2. The same approach as in “CephaNN: A Multi-Head Attention Network for Cephalometric Landmark Detection” - JIAHOONG QIAN
et al. is used.
- Parameters:
path_dir (str) –
- Return type:
LandmarkDataset | tuple[LandmarkDataset, LandmarkDataset, LandmarkDataset] | tuple[LandmarkDataset, LandmarkDataset, LandmarkDataset, LandmarkDataset]
- landmarker.datasets.get_cepha_mask_datasets(path_dir, train_transform=None, inference_transform=None, junior=False, single_dataset=False, cv=False, **kwargs)[source]#
Returns a MaskDataset with the ISBI 2015 cephalogram challenge dataset. The dataset is split into train, test1 and test2. The same approach as in “CephaNN: A Multi-Head Attention Network for Cephalometric Landmark Detection” - JIAHOONG QIAN et al. is used.
- Parameters:
path_dir (str) – The path to the directory where the dataset should be stored.
train_transform (Optional[Callable], optional) – A transformation to apply to the images and masks during training. Defaults to None.
inference_transform (Optional[Callable], optional) – A transformation to apply to the images and masks during inference. Defaults to None.
junior (bool, optional) – Whether to use the junior or senior annotator. Defaults to False.
single_dataset (bool, optional) – Whether to return a single dataset with all images and landmarks. Defaults to False.
**kwargs – Additional keyword arguments for the MaskDataset.
cv (bool) –
- Return type:
MaskDataset | tuple[MaskDataset, MaskDataset, MaskDataset] | tuple[MaskDataset, MaskDataset, MaskDataset, MaskDataset]
- landmarker.datasets.get_cepha_patch_datasets(path_dir, index_landmark=0, train_transform=None, inference_transform=None, store_imgs=True, junior=False, single_dataset=False, cv=False, **kwargs)[source]#
Returns a PatchDataset objects with the CEPH dataset, a combination of the ISBI 2014 & 2015 challenges. The dataset is split into train, test1 and test2. The same approach as in “CephaNN: A Multi-Head Attention Network for Cephalometric Landmark Detection” - JIAHOONG QIAN
et al. is used.
- Parameters:
path_dir (str) –
index_landmark (int) –